Green composite adsorbent (biopolymer-activated carbon): synthesis and application for methylene bleu removal

Ahmed Boucherdoud^{1,2*}, Benaouda Bestani¹, DjamalEddine Kherroub³, Nouredine Benderdouche¹, Oukacha Douinat¹

¹ Laboratory of Structure, Development and Application of Molecular Materials, SEA2M, Faculty of Science and Technology. Abdelhamid Ibn Badis University -Mostaganem, Algeria.
² Institute of Exact Sciences and Sciences of Nature and Life, Ahmed Zabana University Center, Relizane, Algeria.

³Laboratory of Polymer Chemistry, Ahmed Ben Bella University BP 1524 El'Menouer Oran 31000, Algeria

Abstract. A new composite adsorbent of biopolymer and activated carbon was prepared by ionic gelatinization method at ambient in order to eliminate methylene blue dye from aqueous solution in continuous mode using a controlled glass column. The prepared composite adsorbent was characterized by infrared spectroscopy (IRTF) and scanning electron microscopy (SEM-EDX). Effects of the parameters on dye adsorption such as bed height, initial concentration and flow rate were also studied. Obtained results show that the bed service time increases with increasing bed height and decreases with the increase of the initial concentration and the flow rate. The adsorption dynamics of methylene blue obeys Thomas model with a correlation coefficient R2 = 0.99. The Thomas model shows an increase of the absorbed capacity q_e according to the initial concentration and the flow rate, while this model's constant KTH decreases according to the concentration range.

Keywords: Composite adsorbents, biopolymer, activated carbon, methylene blue, adsorption.